LIE ALGEBRAS AND LIE GROUPS 1

Please submit a solution to four of the following five problems for full marks.
(1) Let \mathbb{K} be a field, and V a \mathbb{K}-vector space. Let $\mathfrak{g l}(V)$ be the space of \mathbb{K}-linear maps from V to itself, endowed with the bilinear map

$$
[-,-]: \mathfrak{g l l}(V) \times \mathfrak{g l}(V) \rightarrow \mathfrak{g l}(V), \quad[A, B] \mapsto A \circ B-B \circ A
$$

Show that $\mathfrak{g l}(V)$ is a Lie algebra.
(2) Let \mathbb{K} be a field and $A, B \in M_{n}(\mathbb{K})$, show that

$$
\operatorname{tr}(A B)=\operatorname{tr}(B A)
$$

(3) For $l \in \mathbb{Z}_{>0}$, we denote by $\mathfrak{s p}(2 l, \mathbb{C})$ the Lie algebra associated to bilinear form given by

$$
S:=\left(\begin{array}{cc}
0 & \mathrm{id} \\
-\mathrm{id} & 0
\end{array}\right)
$$

where id is the $l \times l$-identity matrix. Show that a matrix $A \in \mathfrak{g l}_{S}(2 l, \mathbb{C})$ belongs to $\mathfrak{s p}(2 l, \mathbb{C})$ if and only if it is of the form

$$
\left(\begin{array}{cc}
m & p \\
q & -m^{t}
\end{array}\right)
$$

where p and q are symmetric matrices, and conclude from this the dimension of $\mathfrak{s p}(l, \mathbb{C})$.
(4) Let L be a Lie algebra, and $J \subseteq L$ be an ideal of L, and let $I \subseteq J$ be an ideal of J, then I is an ideal of L.
(5) Show that a Lie algebra is solvable if and only if it there exists a filtration by ideals

$$
0=I_{n} \subset I_{n-1} \subset \cdots \subset I_{1}=L
$$

such that each quotient Lie algebra I_{k} / I_{k+1} is abelian.

