EXAMPLES

1. Basis Examples

Example 1.1. Consider the special case $\mathfrak{s l}_{2}$ of the general Lie algebra $\mathfrak{s l}_{n}$. An explicit basis is given by the three matrices:

$$
e:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad h:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad f:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The Lie bracket acts according to

$$
[e, f]=h, \quad[h, e]=2 e, \quad[h, f]=-2 f .
$$

Note that the matrix product satisfies

$$
\text { e.f }=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) \notin \mathfrak{s l}_{2} .
$$

Thus we see that while $\mathfrak{s l}_{2}$ is closed under the Lie bracket, it is not closed under matrix multiplication.

Example 1.2. Define the algebra of upper-triangular matrices by

$$
\mathfrak{b}_{n}(\mathbb{K}):=\left\{\left(a_{i j}\right) \in \mathfrak{g l}_{n}(\mathbb{K}) \mid a_{i j}=0, \text { for } i>j\right\},
$$

the algebra of strictly upper-triangular matrices by

$$
\mathfrak{n}_{n}(\mathbb{K}):=\left\{\left(a_{i j}\right) \in \mathfrak{g l}_{n}(\mathbb{K}) \mid a_{i j}=0, \text { for } i \geq j\right\},
$$

the algebra of diagonal matrices

$$
\mathfrak{t}_{n}(\mathbb{K})=\left\{(a i j) \in \mathfrak{g l}_{n}(\mathbb{K}) \mid a_{i j}=0 \text { for } i \neq j\right\} .
$$

Note that all of them are Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{K})$.
Example 1.3. Let V be a \mathbb{K}-vector space of dimension n and $\sigma: V \times V \rightarrow \mathbb{K}$ be a bilinear form. Define

$$
\mathfrak{o}(V, \sigma)=\{A \in \mathfrak{g l}(V) \mid \sigma(A v, w)=-\sigma(v, A w), \text { for all } v, w \in V\} .
$$

It is a Lie subalgebra of $\mathfrak{g l}(V)$, called the orthogonal Lie algebra. If $A, B \in \mathfrak{o}(V, \sigma)$, then

$$
\begin{aligned}
\sigma([A, B] v, w) & =\sigma(A B v, w)-\sigma(B A v, w) \\
& =-\sigma(B v, A w)+\sigma(A v, B w) \\
& =\sigma(v, B A w)-\sigma(v, A B w) \\
& =-\sigma(v,[A, B] w),
\end{aligned}
$$

and therefore $[A, B] \in \mathfrak{o}(V, \sigma)$. If $V=\mathbb{K}^{n}$, there exists a (unique) matrix S such that

$$
\sigma(v, w)=v^{t} S w, \quad \text { for all } v, w \in V
$$

The condition $\sigma(A v, w)=-\sigma(v, A w)$ can be written in the form

$$
(A v)^{t} S w=v^{t} A^{t} S w=-v^{t} S A w .
$$

As it is satisfied for all $v, w \in V$, we conclude that $A^{t} S=-S A$. Therefore

$$
\mathfrak{o}(V, \sigma)=\mathfrak{o}(n, S)=\left\{A \in \mathfrak{g l}_{n}(\mathbb{K}) \mid A^{t} S=-S A\right\} .
$$

If σ is non-degenerate (or equivalently if S is invertible), we can write $S^{-1} A^{t} S=-A$. Therefore, we see that

$$
-\operatorname{tr}(A)=\operatorname{tr}\left(S^{-1} A T S\right)=\operatorname{tr}\left(S S^{-1} A T\right)=\operatorname{tr}\left(A^{t}\right)=\operatorname{tr}(A) .
$$

Hence $\operatorname{tr}(A)=0$ and $A \in \mathfrak{s l}_{n}(k)$. For this reason the Lie algebra $\mathfrak{o}(V, \sigma)$ is also denoted by $\mathfrak{s o}(V, \sigma)$ and is called the special orthogonal Lie algebra.
Example 1.4. If σ is symmetric non-degenerate and \mathbb{K} is an algebraically closed field with $\operatorname{char}(\mathbb{K}) \neq 2$, then one can choose a basis of V such that σ is given by the identity matrix $S=\mathrm{id}$. The algebra

$$
\mathfrak{s o}(n)=\mathfrak{s o}(V, \sigma)=\left\{A \in \mathfrak{g l}_{n}(\mathbb{K}) \mid A^{t}=-A\right\}
$$

consists of skew-symmetric matrices and is called the (special) orthogonal Lie algebra.
Example 1.5. Let σ be a skew-symmetric non-degenerate form for a vector space V. One can show that $\operatorname{dim}(V)=2 n$, for some natural number n, and that there exists a basis of V such that σ is given by the matrix

$$
\left(\begin{array}{cc}
0 & \mathrm{id} \\
-\mathrm{id} & 0
\end{array}\right)
$$

The algebra

$$
\mathfrak{s p}(2 n, k)=\mathfrak{s o}(V, \sigma)=\left\{A \in \mathfrak{g l}_{n}(k) \mid A^{t} S=-S A\right\}
$$

is called the symplectic Lie algebra.
Example 1.6. The set

$$
\mathfrak{u}_{n}:=\left\{A \in \mathfrak{g l}_{n}(\mathbb{C}) \mid A^{*}=-A\right\}, \quad \text { where } A^{*}:=\bar{A}^{t}
$$

is a vector space over \mathbb{R} (but not over \mathbb{C}). It is a Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{C})$ (over \mathbb{R}), called the unitary Lie algebra. For example

$$
\mathfrak{u}_{1}=\{x+i y \in \mathbb{C} \mid x-i y=-(x+i y)\}=\{x+i y \in \mathbb{C} \mid x=0\}=i \mathbb{R} .
$$

Define the special unitary Lie algebra to be

$$
\mathfrak{s u}_{n}:=\mathfrak{u}_{n} \cap \mathfrak{s l}_{n}(\mathbb{C}) .
$$

Example 1.7. Let σ be the symmetric non-degenerate form given by the matrix

$$
\left(\begin{array}{cc}
\mathrm{id}_{p} & 0 \\
0 & -\mathrm{id}_{q}
\end{array}\right) .
$$

The algebra

$$
\mathfrak{s o}(p, q)=\mathfrak{s o}(V, \sigma)=\left\{A \in \mathfrak{g l}_{n}(k) \mid A^{t} S=-S A\right\}
$$

is called the Lorentzian Lie algebra.
1.1. The Witt Algebra. Consider the algebra of polynomials $\mathbb{C}[t]$. Its Lie algebra of derivations $\operatorname{Der}(\mathbb{C}[t])$ is called the Witt algebra.
Let us try to find a concrete description of the Witt algebra. There is an obvious derivation

$$
\frac{d}{d t}: \mathbb{C}[t] \rightarrow \mathbb{C}[t]
$$

More generally, for any $f \in \mathbb{C}[t]$, the map

$$
f \frac{\mathrm{~d}}{\mathrm{~d} t}: \mathbb{C}[t] \rightarrow \mathbb{C}[t], \quad g \mapsto f \frac{\mathrm{~d} g}{\mathrm{~d} t}
$$

is also a derivation. Conversely, given an arbitrary derivation δ, consider the polynomial $f:=\delta(t) \in \mathbb{C}[t]$. Then

$$
\delta\left(t^{n}\right)=n t^{n-1} \delta(t)=n t^{n-1} f=f \frac{\mathrm{~d}}{\mathrm{~d} t}\left(t^{n}\right)
$$

Therefore $\delta=f \mathrm{~d} / \mathrm{d} t$, and we see that $\operatorname{Der}(\mathbb{C}[t])=\mathbb{C}[t] \mathrm{d} / \mathrm{d} t$. Explicitly, the formula

$$
\left[f \frac{\mathrm{~d}}{\mathrm{~d} t}, g \frac{\mathrm{~d}}{\mathrm{~d} t}\right]=\left(f \frac{\mathrm{~d} g}{\mathrm{~d} t}-g \frac{\mathrm{~d} f}{\mathrm{~d} t}\right) \frac{\mathrm{d}}{\mathrm{~d} t}
$$

describes the Lie bracket of the Witt algebra.

1.2. Ideals and Quotients.

Example 1.8. Consider the Lie algebra $L=\mathfrak{s l}_{2}(\mathbb{K})$. We know that it has a basis e, h, f with multiplication

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

This implies that

$$
L^{\prime}=[L, L]=L
$$

Let us build on this and show that the only ideals of L are zero and L. Let $I \subseteq L$ be a non-zero ideal and

$$
a e+b f+c h \in I, \quad \text { for some } a, b, c \in \mathbb{K}
$$

a non-zero element. If $a \neq 0$, then we can apply ad_{f} twice and obtain

$$
a[f,[f, e]]=2 a f \in I
$$

If $a=0$ and $b \neq 0$, we apply ad_{h} and obtain

$$
-2 b f \in I
$$

If $a=b=0$ and $c \neq 0$, then we can apply ad_{f} and obtain

$$
2 c f \in I
$$

Finally, since $f \in I$ generates the whole of L as an ideal, we must have that $L=I$.
In particular, we see that since $\mathfrak{s l}_{2}$ is not abelian, and the center $Z\left(\mathfrak{s l}_{2}\right)$ is an ideal, we must have that

$$
Z\left(\mathfrak{s l}_{2}\right)=0
$$

