
EXAMPLES

1. Basis Examples

Example 1.1. Consider the special case sl2 of the general Lie algebra sln. An explicit
basis is given by the three matrices:

e :=

(
0 1
0 0

)
, h :=

(
1 0
0 −1

)
, f :=

(
0 0
1 0

)
The Lie bracket acts according to

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Note that the matrix product satisfies

e.f =

(
0 1
0 0

)(
0 0
−1 0

)
=

(
−1 0
0 0

)
/∈ sl2.

Thus we see that while sl2 is closed under the Lie bracket, it is not closed under matrix
multiplication.

Example 1.2. Define the algebra of upper-triangular matrices by

bn(K) := {(aij) ∈ gln(K) | aij = 0, for i > j},
the algebra of strictly upper-triangular matrices by

nn(K) := {(aij) ∈ gln(K) | aij = 0, for i ≥ j},
the algebra of diagonal matrices

tn(K) = {(aij) ∈ gln(K) | aij = 0 for i 6= j}.
Note that all of them are Lie subalgebras of gln(K).

Example 1.3. Let V be a K-vector space of dimension n and σ : V × V → K be a
bilinear form. Define

o(V, σ) = {A ∈ gl(V ) |σ(Av,w) = −σ(v,Aw), for all v, w ∈ V }.
It is a Lie subalgebra of gl(V ), called the orthogonal Lie algebra. If A,B ∈ o(V, σ), then

σ([A,B]v, w) =σ(ABv,w)− σ(BAv,w)

= − σ(Bv,Aw) + σ(Av,Bw)

=σ(v,BAw)− σ(v,ABw)

= − σ(v, [A,B]w),

and therefore [A,B] ∈ o(V, σ). If V = Kn, there exists a (unique) matrix S such that

σ(v, w) = vtSw, for all v, w ∈ V.
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The condition σ(Av,w) = −σ(v,Aw) can be written in the form

(Av)tSw = vtAtSw = −vtSAw.

As it is satisfied for all v, w ∈ V , we conclude that AtS = −SA. Therefore

o(V, σ) = o(n, S) = {A ∈ gln(K) |AtS = −SA}.

If σ is non-degenerate (or equivalently if S is invertible), we can write S−1AtS = −A.
Therefore, we see that

−tr(A) = tr(S−1ATS) = tr(SS−1AT ) = tr(At) = tr(A).

Hence tr(A) = 0 and A ∈ sln(k). For this reason the Lie algebra o(V, σ) is also denoted
by so(V, σ) and is called the special orthogonal Lie algebra.

Example 1.4. If σ is symmetric non-degenerate and K is an algebraically closed field
with char(K) 6= 2, then one can choose a basis of V such that σ is given by the identity
matrix S = id. The algebra

so(n) = so(V, σ) = {A ∈ gln(K) |At = −A}

consists of skew-symmetric matrices and is called the (special) orthogonal Lie algebra.

Example 1.5. Let σ be a skew-symmetric non-degenerate form for a vector space V .
One can show that dim(V ) = 2n, for some natural number n, and that there exists a
basis of V such that σ is given by the matrix(

0 id
−id 0

)
The algebra

sp(2n, k) = so(V, σ) = {A ∈ gln(k) |AtS = −SA}
is called the symplectic Lie algebra.

Example 1.6. The set

un := {A ∈ gln(C) |A∗ = −A}, where A∗ := A
t

is a vector space over R (but not over C). It is a Lie subalgebra of gln(C) (over R),
called the unitary Lie algebra. For example

u1 = {x+ iy ∈ C |x− iy = −(x+ iy)} = {x+ iy ∈ C |x = 0} = iR.

Define the special unitary Lie algebra to be

sun := un ∩ sln(C).

Example 1.7. Let σ be the symmetric non-degenerate form given by the matrix(
idp 0
0 −idq

)
.

The algebra

s0(p, q) = so(V, σ) = {A ∈ gln(k) |AtS = −SA}
is called the Lorentzian Lie algebra.
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1.1. The Witt Algebra. Consider the algebra of polynomials C[t]. Its Lie algebra of
derivations Der(C[t]) is called the Witt algebra.

Let us try to find a concrete description of the Witt algebra. There is an obvious
derivation

d

dt
: C[t]→ C[t].

More generally, for any f ∈ C[t], the map

f
d

dt
: C[t]→ C[t], g 7→ f

dg

dt
is also a derivation. Conversely, given an arbitrary derivation δ, consider the polynomial
f := δ(t) ∈ C[t]. Then

δ(tn) = ntn−1δ(t) = ntn−1f = f
d

dt
(tn).

Therefore δ = fd/dt, and we see that Der(C[t]) = C[t]d/dt. Explicitly, the formula[
f

d

dt
, g

d

dt

]
=

(
f

dg

dt
− gdf

dt

)
d

dt

describes the Lie bracket of the Witt algebra.

1.2. Ideals and Quotients.

Example 1.8. Consider the Lie algebra L = sl2(K). We know that it has a basis e, h, f
with multiplication

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

This implies that
L′ = [L,L] = L.

Let us build on this and show that the only ideals of L are zero and L. Let I ⊆ L be a
non-zero ideal and

ae+ bf + ch ∈ I, for some a, b, c ∈ K.
a non-zero element. If a 6= 0, then we can apply adf twice and obtain

a[f, [f, e]] = 2af ∈ I.
If a = 0 and b 6= 0, we apply adh and obtain

−2bf ∈ I.
If a = b = 0 and c 6= 0, then we can apply adf and obtain

2cf ∈ I.
Finally, since f ∈ I generates the whole of L as an ideal, we must have that L = I.

In particular, we see that since sl2 is not abelian, and the center Z(sl2) is an ideal, we
must have that

Z(sl2) = 0.
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